KINESPORT KINESPORT
 


  • Florent Manaudou Ambassadeur Kinesport
  • SYMPOSIUM 2020
  • BFR
  • Formation Kinésithérapie du Sport Expert
  • Kickoff
  • Masterclass


Quelle est la prévalence de l'arthrose et des pathologies intra-articulaires de la hanche chez les athlètes actifs souffrant de douleurs à la hanche et à l'aine, comparées à ceux qui n'en ont pas ? Une revue systématique et une méta-analyse



INTRODUCTION

Les douleurs à la hanche et à l'aine sont courantes chez les athlètes, en particulier ceux participant aux activités tel que le football, le hockey sur glace et la danse. La douleur à la hanche et à l'aine constitue jusqu'à 18% de toutes les blessures entraînant une perte de temps dans le football professionnel. En outre, dans le football, 59% des hommes et 45% des femmes vont souffrir de douleurs à l'aine ou de blessures durant une saison de compétition. De nombreux athlètes connaîtront des symptômes de longue durée, un footballeur élite sur trois souffrant de douleurs à la hanche et à l'aine présentant des symptômes persistants depuis plus de 6 semaines. La chronicité des symptômes est associée à de plus grandes difficultés dans les activités de la vie quotidienne, à une baisse de la qualité de la vie et à une altération des performances sportives.
 
La douleur à l'aine liée à la hanche chez les athlètes résulte souvent du syndrome de conflit fémoroacétabulaire (type cam ou pince) et de lésion labrales. Au fil du temps, la morphologie en cam peut entraîner des affections intra-articulaires de la hanche, y compris l'arthrose de la hanche. La morphologie en cam est associée à une pathologie intra-articulaire, notamment des déchirures labrales chez les personnes souffrant ou non de douleur [25–27], et multiplie par dix le risque de développer une arthrose chez les adultes plus âgés.
 
Des études sur la prévalence d'affections intra-articulaires de la hanche, y compris la morphologie osseuse, les déchirures labrales et les défauts du cartilage chez les athlètes, n'ont pas décrit toutes les pathologies intra-articulaires fréquemment rapportées. De plus, La prévalence de l'arthrose de la hanche chez les athlètes à la retraite est connue, mais la prévalence chez les athlètes pratiquant actuellement un sport ne l'est pas.

OBJECTIF 

Le but de cette revue était de déterminer la prévalence de pathologies intra-articulaires de la hanche telles que les déchirures labrales, les défauts du cartilage, les déchirures ligamenteuses, les lésions de la moelle osseuse, la synovite et l'arthrose de la hanche chez les athlètes avec et sans douleur à la hanche et à l'aine qui font actuellement du sport.

METHODE

Deux auteurs indépendants ont entrepris une recherche exhaustive à l'aide des bases de données OVID MEDLINE, Pub-Med, CINAHL, EMBASE, SPORTDiscus, SCOPUS et Cochrane.
 
Deux auteurs ont indépendamment extrait les données des 20 articles inclus.
 
Pour déterminer la prévalence des pathologies intra-articulaires de la hanche et / ou de l'arthrose, le nombre d'athlètes (cas) a été divisé par la population totale d'athlètes incluse dans l'article. Les auteurs ont utilisé le logiciel Comprehensive Meta-Analysis pour déterminer la prévalence globale et les intervalles de confiance à 95%. La prévalence des pathologies intra-articulaires de la hanche et de l'arthrose a été rapportée soit par personne, soit par hanche, selon la méthode utilisée dans l'article inclus.

RESULTAT
 
  • À la fin de la recherche dans la base de données, 847 articles ont été identifiés. L'élimination des doublons a laissé 470 articles à filtrer par titre et par résumé, et 69 articles en texte intégral dont l'éligibilité a été évaluée à l'aide des critères d'inclusion énumérés. Au total, six articles supplémentaires ont été récupérés et évalués pour inclusion après la fin de la recherche dans la liste de références et le suivi des citations. Cinquante-cinq articles ont été exclus, avec un total de 20 articles inclus dans l'analyse pour une analyse qualitative et quantitative.
Quelle est la prévalence de l'arthrose et des pathologies intra-articulaires de la hanche chez les athlètes actifs souffrant de douleurs à la hanche et à l'aine, comparées à ceux qui n'en ont pas ? Une revue systématique et une méta-analyse

  • Chez les athlètes asymptomatiques, des preuves limitées identifiaient une prévalence de déchirure labrale de 54% par personne et une preuve modérée de 33% par hanche. Chez les athlètes symptomatiques, une prévalence modérée de 20% de déchirure labrale par hanche a été constatée.
Quelle est la prévalence de l'arthrose et des pathologies intra-articulaires de la hanche chez les athlètes actifs souffrant de douleurs à la hanche et à l'aine, comparées à ceux qui n'en ont pas ? Une revue systématique et une méta-analyse

  • Des preuves modérées d'une prévalence de 10% par défaut de cartilage ont été rapportées chez des athlètes asymptomatiques. Chez les athlètes symptomatiques, la prévalence des défauts du cartilage était de 7 à 40%.
 
  • Chez les athlètes asymptomatiques, la prévalence de l'arthrose de la hanche était de 0 à 17%, contre 2% chez les athlètes symptomatiques.
Quelle est la prévalence de l'arthrose et des pathologies intra-articulaires de la hanche chez les athlètes actifs souffrant de douleurs à la hanche et à l'aine, comparées à ceux qui n'en ont pas ? Une revue systématique et une méta-analyse

CONCLUSION

Cette revue systématique met en évidence que des pathologies intra-articulaires de la hanche par imagerie définies sont observées chez les athlètes avec et sans douleur. Parmi les études incluses, les méthodes utilisées pour évaluer la présence de pathologies intra-articulaires de la hanche présentaient une hétérogénéité considérable.
 
Des pathologies intra-articulaires de la hanche sont observées chez les athlètes avec et sans douleur. Les déchirures labiales ont été identifiées chez un sportif sur deux sans douleur, soulignant ainsi une relation discordante potentielle entre les déchirures labrales et la douleur chez les athlètes. Des défauts cartilagineux, des lésions de la moelle osseuse, des hernies, une érosion de la hanche, une dégénérescence labrale et des déchirures ligamentaires ont été observés chez des athlètes symptomatiques et asymptomatiques. Une relation complexe existe entre les conditions structurelles de la hanche identifiées avec l'imagerie et la douleur chez les athlètes.
 

Article original:

Joshua J. Heerey, Joanne L. Kemp · Andrea B. Mosler · Denise M. Jones1 · Tania Pizzari1 · Mark J. Scholes · Rintje Agricola · Kay M. Crossley. What is the Prevalence of Hip Intra‐Articular Pathologies and Osteoarthritis in Active Athletes with Hip and Groin Pain Compared with Those Without? A Systematic Review and Meta‐Analysis. Sports Medicine https://doi.org/10.1007/s40279-019-01092-y

 Référence :1. Mosler AB, Weir A, Eirale C, Farooq A, Thorborg K, Whiteley RJ, et al. Epidemiology of time loss groin injuries in a men’s professional football league: a 2-year prospective study of 17 clubs and 606 players. Br J Sports Med. 2017;52(5):292–7. https ://doi.org/10.1136/bjsports-2016-097277.
2. Gouttebarge V, Hughes Schwab BA, Vivian A, Kerkho s GMMJ. Injuries, matches missed and the in uence of minimum medical standards in the A-League professional football: a 5-year pro- spective study. Asian J Sports Med. 2016;7(1):e31385. https:// doi.org/10.5812/asjsm.31385.
3. Thorborg K, Rathle  MS, Petersen P, Branci S, Holmich P. Prevalence and severity of hip and groin pain in sub-elite male football: a cross-sectional cohort study of 695 players. Scand J Med Sci Sports. 2017;27(1):107–14. https://doi.org/10.1111/ sms.12623.
4. Coleman SH, Mayer SW, Tyson JJ, Pollack KM, Curriero FC. The epidemiology of hip and groin injuries in professional base- ball players. Am J Orthop (Belle Mead NJ). 2016;45(3):168–75.
5. Dalton SL, Zupon AB, Gardner EC, Djoko A, Dompier TP, Kerr ZY. The epidemiology of hip/groin injuries in national colle- giate athletic association men’s and women’s ice hockey: 2009- 2010 through 2014-2015 academic years. Orthop J Sports Med. 2016;4(3):2325967116632692. https://doi.org/10.1177/23259 67116632692.
6. Haroy J, Clarsen B, Thorborg K, Holmich P, Bahr R, Andersen TE. Groin problems in male soccer players are more common than previously reported. Am J Sports Med. 2017;45(6):1304–8. https://doi.org/10.1177/0363546516687539.
7. Kerr ZY, Kroshus E, Grant J, Parsons JT, Folger D, Hayden R, et al. Epidemiology of national collegiate athletic asso- ciation men’s and women’s cross-country injuries, 2009-2010 through 2013-2014. J Athl Train. 2016;51(1):57–64. https://doi. org/10.4085/1062-6050-51.1.10.
8. Larruskain J, Lekue JA, Diaz N, Odriozola A, Gil SM. A comparison of injuries in elite male and female football play- ers: a  ve-season prospective study. Scand J Med Sci Sports. 2018;28(1):237–45. https://doi.org/10.1111/sms.12860.
9. Trentacosta N, Sugimoto D, Micheli LJ. Hip and groin injuries in dancers: a systematic review. Sports Health. 2017;9(5):422–7. https://doi.org/10.1177/1941738117724159.
10. Walden M, Hagglund M, Ekstrand J. The epidemiology of groin injury in senior football: a systematic review of prospec- tive studies. Br J Sports Med. 2015;49(12):792–7. https://doi. org/10.1136/bjsports-2015-094705.
11. Werner J, Hagglund M, Walden M, Ekstrand J. UEFA injury study: a prospective study of hip and groin injuries in professional football over seven consecutive seasons. Br J Sports Med. 2009;43(13):1036–40. https://doi.org/10.1136/ bjsm.2009.066944.
12. Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Foot- ball League. Am J Sports Med. 2013;41(4):734–41. https://doi. org/10.1177/0363546513476270.
13. Werner J, Hägglund M, Ekstrand J, Waldén M. Hip and groin time-loss injuries decreased slightly but injury burden remained constant in men’s professional football: the 15-year prospective UEFA elite club injury study. Br J Sports Med. 2018. https://doi.org/10.1136/bjsports-2017-097796 (Epub 2018 Apr 24).
14. Weir A, Brukner P, Delahunt E, Ekstrand J, Gri n D, Khan KM, et al. Doha agreement meeting on terminology and de nitions in groin pain in athletes. Br J Sports Med. 2015;49(12):768–74. https://doi.org/10.1136/bjsports-2015-094869.
15. Rankin AT, Bleakley CM, Cullen M. Hip joint pathology as a leading cause of groin pain in the sporting population: a 6-year review of 894 cases. Am J Sports Med. 2015;43(7):1698–703. https://doi.org/10.1177/0363546515582031.
16. Thorborg K, Reiman MP, Weir A, Kemp JL, Serner A, Mosler AB, et al. Clinical examination, diagnostic imaging, and testing of athletes with groin pain: an evidence-based approach to e ec- tive management. J Orthop Sports Phys Ther. 2018;48(4):239– 49. https://doi.org/10.2519/jospt.2018.7850.
17. Holmich P. Long-standing groin pain in sportspeople falls into three primary patterns, a “clinical entity” approach: a prospective study of 207 patients. Br J Sports Med. 2007;41(4):247–52. https ://doi.org/10.1136/bjsm.2006.033373.
18. Keogh MJ, Batt ME. A review of femoroacetabular impinge- ment in athletes. Sports Med. 2008;38(10):863–78. https://doi. org/10.2165/00007256-200838100-00005.
19. Zadpoor AA. Etiology of femoroacetabular impingement in ath- letes: a review of recent  ndings. Sports Med. 2015;45(8):1097– 106. https://doi.org/10.1007/s40279-015-0339-2.
20. Tranovich MJ, Salzler MJ, Enseki KR, Wright VJ. A review of femoroacetabular impingement and hip arthroscopy in the ath- lete. Phys Sportsmed. 2014;42(1):75–87. https://doi.org/10.3810/ psm.2014.02.2050.
21. Gri n DR, Dickenson EJ, O’Donnell J, Agricola R, Awan T, Beck M, et al. The Warwick agreement on femoroacetabular impingement syndrome (FAI syndrome): an international con- sensus statement. Br J Sports Med. 2016;50(19):1169–76. https ://doi.org/10.1136/bjsports-2016-096743.
22. Frank JM, Harris JD, Erickson BJ, Slikker W, Bush-Joseph CA, Salata MJ, et al. Prevalence of femoroacetabular impinge- ment imaging  ndings in asymptomatic volunteers: a system- atic review. Arthroscopy. 2015;31(6):1199–204. https://doi. org/10.1016/j.arthro.2014.11.042.
23. Mascarenhas VV, Rego P, Dantas P, Morais F, McWil- liams J, Collado D, et al. Imaging prevalence of femoroac- etabular impingement in symptomatic patients, athletes, and asymptomatic individuals: a systematic review. Eur J Radiol. 2016;85(1):73–95. https://doi.org/10.1016/j.ejrad.2015.10.016.
24. Nepple JJ, Vigdorchik JM, Clohisy JC. What Is the association between sports participation and the development of proxi- mal femoral cam deformity? A systematic review and meta- analysis. Am J Sports Med. 2015;43(11):2833–40. https://doi. org/10.1177/0363546514563909.
25. Reichenbach S, Leunig M, Werlen S, Nuesch E, Pfirrmann CW, Bonel H, et al. Association between cam-type deformities and magnetic resonance imaging-detected structural hip dam- age: a cross-sectional study in young men. Arthritis Rheum. 2011;63(12):4023–30. https://doi.org/10.1002/art.30589.
26. Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ. Prevalence of abnormal hip  ndings in asymp- tomatic participants: a prospective, blinded study. Am J Sports Med. 2012;40(12):2720–4. https://doi.org/10.1177/0363546512 462124.
27. Grace T, Samaan MA, Souza RB, Link TM, Majumdar S, Zhang AL. Correlation of patient symptoms with labral and articular cartilage damage in femoroacetabular impingement. Orthop J Sports Med. 2018;6(6):2325967118778785. https://doi. org/10.1177/2325967118778785.
28. Agricola R, Heijboer MP, Bierma-Zeinstra SM, Verhaar JA, Weinans H, Waarsing JH. Cam impingement causes osteoarthri- tis of the hip: a nationwide prospective cohort study (CHECK). Ann Rheum Dis. 2013;72(6):918–23. https://doi.org/10.1136/ annrheumdis-2012-201643.
29. Arm eld DR, Towers JD, Robertson DD. Radiographic and MR imaging of the athletic hip. Clin Sports Med. 2006;25(2):211– 239, viii. https://doi.org/10.1016/j.csm.2005.12.009.
30. Reiman MP, Thorborg K. Clinical examination and physical assessment of hip joint-related pain in athletes. Int J Sports Phys Ther. 2014;9(6):737–55.
31. Heerey JJ, Kemp JL, Mosler AB, Jones DM, Pizzari T, Souza RB, et al. What is the prevalence of imaging-de ned intra-articu- lar hip pathologies in people with and without pain? A systematic review and meta-analysis. Br J Sports Med. 2018;52(9):581–93. https://doi.org/10.1136/bjsports-2017-098264.
32. Lohkamp M, Kromer TO, Schmitt H. Osteoarthritis and joint replacements of the lower limb and spine in ex-professional soccer players: a systematic review. Scand J Med Sci Sports. 2017;27(10):1038–49. https://doi.org/10.1111/sms.12846.
33. Gouttebarge V, Inklaar H, Backx F, Kerkho s G. Prevalence of osteoarthritis in former elite athletes: a systematic overview of the recent literature. Rheumatol Int. 2015;35(3):405–18. https:// doi.org/10.1007/s00296-014-3093-0.
34. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modi cation of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934–9. https://doi.org/10.1016/j.jclin epi.2011.11.014.
35. Taylor JB, Goode AP, George SZ, Cook CE. Incidence and risk factors for  rst-time incident low back pain: a systematic review and meta-analysis. Spine J. 2014;14(10):2299–319. https://doi. org/10.1016/j.spinee.2014.01.026.
36. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74. https://doi. org/10.2307/2529310.
37. Beals CT, Magnussen RA, Graham WC, Flanigan DC. The prev- alence of meniscal pathology in asymptomatic athletes. Sports Med. 2016;46(10):1517–24. https://doi.org/10.1007/s4027 9-016-0540-y.
38. Nawabi DH, Bedi A, Tibor LM, Magennis E, Kelly BT. The demographic characteristics of high-level and recreational ath- letes undergoing hip arthroscopy for femoroacetabular impinge- ment: a sports-speci c analysis. Arthroscopy. 2014;30(3):398– 405. https://doi.org/10.1016/j.arthro.2013.12.010.
39. Shibata KR, Matsuda S, Safran MR. Arthroscopic hip surgery in the elite athlete: comparison of female and male competi- tive athletes. Am J Sports Med. 2017;45(8):1730–9. https://doi. org/10.1177/0363546517697296.
40. Gold GE, Cicuttini F, Crema MD, Eckstein F, Guermazi A, Kijowski R, et al. OARSI clinical trials recommendations: hip imaging in clinical trials in osteoarthritis. Osteoarthr Cartil. 2015;23(5):716–31. https://doi.org/10.1016/j.joca.2015.03.004.
41. Tonnis D, Legal H, Graf R. Congenital dysplasia and dislocation of the hip in children and adults. Berlin: Springer; 1987.
42. Chandrasekaran S, Gui C, Darwish N, Lodhia P, Suarez-Ahedo C, Domb BG. Outcomes of hip arthroscopic surgery in patients with tönnis grade 1 osteoarthritis with a minimum 2-year follow- up: evaluation using a matched-pair analysis with a control group with tönnis grade 0. Am J Sports Med. 2016;44(7):1781–8. https ://doi.org/10.1177/0363546516638087.
43. Weir A, Rabia S, Ardern C. Trusting systematic reviews and meta-analyses: all that glitters is not gold! Br J Sports Med. 2016;50(18):1100–1. https://doi.org/10.1136/bjsports-2015- 095896.
44. Higgins J, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration; 2011. http://handbook.cochrane.org. Accessed 14 May 2018.
45. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.
46. Rathleff MS, Rathleff CR, Crossley KM, Barton CJ. Is hip strength a risk factor for patellofemoral pain? A systematic review and meta-analysis. Br J Sports Med. 2014;48(14):1088. https://doi.org/10.1136/bjsports-2013-093305.
47. van Tulder M, Furlan A, Bombardier C, Bouter L. Updated method guidelines for systematic reviews in the cochrane col- laboration back review group. Spine. 2003;28(12):1290–9. https ://doi.org/10.1097/01.brs.0000065484.95996.af.
48. Ayeni OR, Banga K, Bhandari M, Maizlin Z, Golev D, et al. Femoroacetabular impingement in elite ice hockey players. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):920–5. https://doi. org/10.1007/s00167-013-2598-5.
49. Kapron AL, Anderson AE, Aoki SK, Phillips LG, Petron DJ, Toth R, et al. Radiographic prevalence of femoroacetabular impingement in collegiate football players. J Bone Jt Surg Am. 2011;93(19):e111(1–10). https://doi.org/10.2106/jbjs.K.00544.
50. Kolo FC, Charbonnier C, P rrmann CWA, Duc SR, Lubbeke A, Duthon VB, et al. Extreme hip motion in professional ballet dancers: dynamic and morphological evaluation based on mag- netic resonance imaging. Skelet Radiol. 2013;42(5):689–98. https://doi.org/10.1007/s00256-012-1544-9.
51. Mariconda M, Cozzolino A, Di Pietto F, Ribas M, Bellotti V, Soldati A. Radiographic  ndings of femoroacetabular impinge- ment in capoeira players. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):874–81. https://doi.org/10.1007/s00167-014-2850-7.
52. Mayes S, Ferris AR, Smith P, Garnham A, Cook J. Atraumatic tears of the ligamentum teres are more frequent in profes- sional ballet dancers than a sporting population. Skelet Radiol. 2016;45(7):959–67. https://doi.org/10.1007/s00256-016-2379-6.
53. Yépez AK, Abreu M, Germani B, Galia CR. Prevalence of femoroacetabular impingement morphology in asymptomatic youth soccer players: magnetic resonance imaging study with clinical correlation. Rev Bras Ortop. 2017;52:14–20. https://doi. org/10.1016/j.rboe.2017.06.005.
54. Anderson L, Anderson M, Kapron A, Aoki S, Erickson J, Chrastil J, et al. Radiographic abnormalities common in senior athletes with well-functioning hips but not associated with osteoarthri- tis. Clin Orthop Relat Res. 2016;474(2):342–52. https://doi. org/10.1007/s11999-015-4379-6.
55. Farrell G, McGrath F, Hogan B, Logan M, Denvir K, O’Connell B, et al. 95% prevalence of abnormality on hip MRI in elite academy level rugby union: a clinical and imaging study of hip disorders. J Sci Med Sport. 2016;19(11):893–7. https://doi. org/10.1016/j.jsams.2016.01.005.
56. Lahner M, Bader S, Walter PA, Duif C, von Schulze Pellengahr C, Lukas C, et al. Prevalence of femoro-acetabular impinge- ment in international competitive track and  eld athletes. Int Orthop. 2014;38(12):2571–6. https://doi.org/10.1007/s0026 4-014-2486-8.
57. Lahner M, Walter PA, von Schulze Pellengahr C, Hagen M, von Engelhardt LV, Lukas C. Comparative study of the femo- roacetabular impingement (FAI) prevalence in male semipro- fessional and amateur soccer players. Arch Orthop Trauma Surg. 2014;134(8):1135–41. https://doi.org/10.1007/s0040 2-014-2008-6.
58. Philippon MJ, Ho CP, Briggs KK, Stull J, Laprade RF. Preva- lence of increased alpha angles as a measure of cam-type femo- roacetabular impingement in youth ice hockey players. Am J Sports Med. 2013;41(6):1357–62. https://doi.org/10.1177/03635 46513483448.
59. Silvis ML, Mosher TJ, Smetana BS, Chinchilli VM, Flemming DJ, Walker EA, et al. High prevalence of pelvic and hip magnetic resonance imaging  ndings in asymptomatic collegiate and pro- fessional hockey players. Am J Sports Med. 2011;39(4):715–21. https://doi.org/10.1177/0363546510388931.
60. Yuan BJ, Bartelt RB, Levy BA, Bond JR, Trousdale RT, Sierra RJ. Decreased range of motion is associated with structural hip deformity in asymptomatic adolescent athletes. Am J Sports Med. 2013;41(7):1519–25. https://doi.org/10.1177/0363546513 488748.
61. Narvani AA, Tsiridis E, Kendall S, Chaudhuri R, Thomas P. A preliminary report on prevalence of acetabular labrum tears in sports patients with groin pain. Knee Surg Sports Trauma- tol Arthrosc. 2003;11(6):403–8. https://doi.org/10.1007/s0016 7-003-0390-7.
62. Nepple JJ, Brophy RH, Matava MJ, Wright RW, Clohisy JC. Radiographic findings of femoroacetabular impingement in national football league combine athletes undergoing radiographs for previous hip or groin pain. Arthroscopy. 2012;28(10):1396– 403. https://doi.org/10.1016/j.arthro.2012.03.005.
63. Harris JD, Gerrie BJ, Varner KE, Lintner DM, McCulloch PC. Radiographic prevalence of dysplasia, cam, and pincer deformi- ties in elite ballet. Am J Sports Med. 2016;44(1):20–7. https:// doi.org/10.1177/0363546515601996.
64. Larson CM, Ross JR, Kuhn AW, Fuller D, Rowley DM, Giveans MR, et al. Radiographic hip anatomy correlates with range of motion and symptoms in national hockey league players. Am J Sports Med. 2017;45(7):1633–9. https://doi.org/10.1177/03635 46517692542.
65. Mayes S, Ferris AR, Smith P, Garnham A, Cook J. Similar preva- lence of acetabular labral tear in professional ballet dancers and sporting participants. Clin J Sports Med. 2016;26(4):307–13. https://doi.org/10.1097/JSM.0000000000000257.
66. Mayes S, Ferris AR, Smith P, Garnham A, Cook J. Professional ballet dancers have a similar prevalence of articular cartilage defects compared to age- and sex-matched non-dancing athletes. Clin Rheumatol. 2016;35(12):3037–43. https://doi.org/10.1007/ s10067-016-3389-4.
67. Dickenson E, O’Connor P, Robinson P, Campbell R, Ahmed I, Fernandez M, et al. Hip morphology in elite golfers: asymmetry between lead and trail hips. Br J Sports Med. 2016;50(17):1081– 6. https://doi.org/10.1136/bjsports-2016-096007.
68. Feeley BT, Powell JW, Muller MS, Barnes RP, Warren RF, Kelly BT. Hip injuries and labral tears in the national football league. Am J Sports Med. 2008;36(11):2187–95. https://doi. org/10.1177/0363546508319898.
69. Lewis CL, Sahrmann SA. Acetabular labral tears. Phys Ther. 2006;86(1):110–21.
70. Epstein DM, McHugh M, Yorio M, Neri B. Intra-articular hip injuries in national hockey league players: a descriptive epide- miological study. Am J Sports Med. 2013;41(2):343–8. https:// doi.org/10.1177/0363546512467612.
71. Kumar D, Wyatt CR, Lee S, Nardo L, Link TM, Majum- dar S, et al. Association of cartilage defects, and other MRI findings with pain and function in individuals with mild-moderate radiographic hip osteoarthritis and controls. Oste- oarthr Cartil. 2013;21(11):1685–92. https://doi.org/10.1016/j. joca.2013.08.009.
72. Lee S, Nardo L, Kumar D, Wyatt CR, Souza RB, Lynch J, et al. Scoring hip osteoarthritis with MRI (SHOMRI): a whole joint osteoarthritis evaluation system. J Magn Reson Imaging. 2015;41(6):1549–57. https://doi.org/10.1002/jmri.24722.
73. Ayeni OR, Adamich J, Farrokhyar F, Simunovic N, Crouch S, Philippon MJ, et al. Surgical management of labral tears during femoroacetabular impingement surgery: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):756–62. https ://doi.org/10.1007/s00167-014-2886-8.
74. Ayeni OR, Alradwan H, de Sa D, Philippon MJ. The hip labrum reconstruction: indications and outcomes—a systematic review. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):737–43. https ://doi.org/10.1007/s00167-013-2804-5.
75. Forster-Horvath C, von Rotz N, Giordano BD, Domb BG. Acetabular labral debridement/segmental resection versus reconstruction in the comprehensive treatment of symptomatic femoroacetabular impingement: a systematic review. Arthros- copy. 2016;32(11):2401–15. https://doi.org/10.1016/j.arthr o.2016.04.035.
76. Reiman MP, Peters S, Sylvain J, Hagymasi S, Mather RC, Goode AP. Femoroacetabular impingement surgery allows 74% of athletes to return to the same competitive level of sports par- ticipation but their level of performance remains unreported: a systematic review with meta-analysis. Br J Sports Med. 2018;52(15):972–81. https://doi.org/10.1136/bjsports-2017- 098696.
77. O’Sullivan K, Darlow B, O’Sullivan P, Forster BB, Reiman MP, Weir A. Imaging for hip-related groin pain: don’t be hip-notised by the  ndings. Br J Sports Med. 2018;52(9):551. https://doi. org/10.1136/bjsports-2017-097889.
78. Roemer FW, Hunter DJ, Winterstein A, Li L, Kim YJ, Cibere J, et al. Hip osteoarthritis MRI scoring system (HOAMS): reli- ability and associations with radiographic and clinical  ndings. Osteoarthr Cartil. 2011;19(8):946–62. https://doi.org/10.1016/j. joca.2011.04.003.
79. Bennell K, Hunter DJ, Vicenzino B. Long-term e ects of sport: preventing and managing OA in the athlete. Nat Rev Rheumatol. 2012;8(12):747–52. https://doi.org/10.1038/nrrheum.2012.119.
80. Tveit M, Rosengren BE, Nilsson JA, Karlsson MK. Former male elite athletes have a higher prevalence of osteoarthritis and arthroplasty in the hip and knee than expected. Am J Sports Med. 2012;40(3):527–33. https://doi.org/10.1177/0363546511429278.
81. Hunter DJ, Guermazi A, Roemer F, Zhang Y, Neogi T. Structural correlates of pain in joints with osteoarthritis. Osteoarthr Cartil. 2013;21(9):1170–8. https://doi.org/10.1016/j.joca.2013.05.017.
82. Culvenor AG, Oiestad BE, Hart HF, Stefanik JJ, Guermazi A, Crossley KM. Prevalence of knee osteoarthritis features on mag- netic resonance imaging in asymptomatic uninjured adults: a sys- tematic review and meta-analysis. Br J Sports Med. 2018. https ://doi.org/10.1136/bjsports-2018-099257 (Epub 2018 Jun 9).
83. Pereira D, Peleteiro B, Araujo J, Branco J, Santos RA, Ramos E. The effect of osteoarthritis definition on preva- lence and incidence estimates: a systematic review. Osteoar- thr Cartil. 2011;19(11):1270–85. https://doi.org/10.1016/j. joca.2011.08.009.
84. Kim C, Nevitt MC, Niu J, Clancy MM, Lane NE, Link TM, et al. Association of hip pain with radiographic evidence of hip osteoarthritis: diagnostic test study. BMJ. 2015;351:h5983. https ://doi.org/10.1136/bmj.h5983.
85. Pollard TC, Gwilym SE, Carr AJ. The assessment of early oste- oarthritis. J Bone Jt Surg Br. 2008;90(4):411–21. https://doi. org/10.1302/0301-620x.90b4.20284.
86. Teichtahl AJ, Wang Y, Smith S, Wluka AE, Giles GG, Bennell KL, et al. Structural changes of hip osteoarthritis using magnetic resonance imaging. Arthritis Res Ther. 2014;16(5):466. https:// doi.org/10.1186/s13075-014-0466-4.
87. Haversath M, Hanke J, Landgraeber S, Herten M, Zilkens C, Krauspe R, et al. The distribution of nociceptive innervation in the painful hip: a histological investigation. Bone Jt J. 2013;95- B(6):770–6. https://doi.org/10.1302/0301-620x.95b6.30262.
88. Gerhardt M, Johnson K, Atkinson R, Snow B, Shaw C, Brown A, et al. Characterisation and classi cation of the neural anatomy in the human hip joint. Hip Int. 2012;22(1):75–81. https://doi. org/10.5301/hip.2012.9042.
89. Martin RL, Palmer I, Martin HD. Ligamentum teres: a func- tional description and potential clinical relevance. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1209–14. https://doi. org/10.1007/s00167-011-1663-1.
90. van Arkel RJ, Amis AA, Cobb JP, Je ers JR. The capsular liga- ments provide more hip rotational restraint than the acetabu- lar labrum and the ligamentum teres: an experimental study. Bone Jt J. 2015;97-b(4):484–91. https://doi.org/10.1302/0301- 620x.97b4.34638.
91. Martin HD, Hatem MA, Kivlan BR, Martin RL. Function of the ligamentum teres in limiting hip rotation: a cadaveric study. Arthroscopy. 2014;30(9):1085–91. https://doi.org/10.1016/j.arthr o.2014.04.087.
92. Roemer FW, Kassim Javaid M, Guermazi A, Thomas M, Kiran A, Keen R, et al. Anatomical distribution of synovitis in knee osteoarthritis and its association with joint e usion assessed on non-enhanced and contrast-enhanced MRI. Osteo- arthr Cartil. 2010;18(10):1269–74. https://doi.org/10.1016/j. joca.2010.07.008.
93. Ahedi HG, Aitken DA, Blizzard LC, Ding CH, Cicuttini FM, Jones G. Correlates of hip cartilage defects: a cross-sectional study in older adults. J Rheumatol. 2016;43(7):1406–12. https ://doi.org/10.3899/jrheum.151001.
94. Domb BG, Jackson TJ, Carter CC, Jester JR, Finch NA, Stake CE. Magnetic resonance imaging  ndings in the symptomatic hips of younger retired national football league players. Am J Sports Med. 2014;42(7):1704–9. https://doi.org/10.1177/03635 46514531551.
95. Dickenson E, Wall PD, Robinson B, Fernandez M, Parsons H, Buchbinder R, et al. Prevalence of cam hip shape morphology: a systematic review. Osteoarthr Cartil. 2016;24(6):949–61. https ://doi.org/10.1016/j.joca.2015.12.020.
96. Mosler AB, Crossley KM, Waarsing JH, Jomaah N, Weir A, Holmich P, et al. Ethnic di erences in bony hip morphology in a cohort of 445 professional male soccer players. Am J Sports Med. 2016;44(11):2967–74. https://doi.org/10.1177/0363546516 656163.
97. Smith TO, Hilton G, Toms AP, Donell ST, Hing CB. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol. 2011;21(4):863–74. https://doi. org/10.1007/s00330-010-1956-7.
98. Reiman MP, Thorborg K, Goode AP, Cook CE, Weir A, Hol- mich P. Diagnostic accuracy of imaging modalities and injection techniques for the diagnosis of femoroacetabular impingement/ labral tear. Am J Sports Med. 2017;45(11):2665–77. https://doi. org/10.1177/0363546516686960.
99. Saied AM, Redant C, El-Batouty M, El-Lakkany MR, El-Adl WA, Anthonissen J, et al. Accuracy of magnetic resonance stud- ies in the detection of chondral and labral lesions in femoroace- tabular impingement: systematic review and meta-analysis. BMC Musculoskelet Disord. 2017;18:83. https://doi.org/10.1186/ s12891-017-1443-2.
100. Smith TO, Simpson M, Ejindu V, Hing CB. The diagnostic test accuracy of magnetic resonance imaging, magnetic reso- nance arthrography and computer tomography in the detection of chondral lesions of the hip. Eur J Orthop Surg Traumatol. 2013;23(3):335–44. https://doi.org/10.1007/s00590-012-0972-5.
101. Linda DD, Naraghi A, Murnaghan L, Whelan D, White LM. Accuracy of non-arthrographic 3T MR imaging in evaluation of intra-articular pathology of the hip in femoroacetabular impingement. Skelet Radiol. 2017;46(3):299–308. https://doi. org/10.1007/s00256-016-2551-z.
102. Schleich C, Hesper T, Hosalkar HS, Rettegi F, Zilkens C, Krauspe R, et al. 3D double-echo steady-state sequence assess- ment of hip joint cartilage and labrum at 3 Tesla: comparative analysis of magnetic resonance imaging and intraoperative data. Eur Radiol. 2017;27(10):4360–71. https://doi.org/10.1007/s0033 0-017-4834-8.
103. Crossley KM, Pandy MG, Majumdar S, Smith AJ, Agricola R, Semciw AI, et al. Femoroacetabular impingement and hip OsteoaRthritis Cohort (FORCe): protocol for a prospective study. J Physiother. 2018;64(1):55. https://doi.org/10.1016/j.jphys .2017.10.004.
 



Instagram Twitter Facebook Inscription Newsletter